Forwarded from Типичный программист
Лаконичная шпора из 12 базовых команд GIT на русском 🙂
Кратко, по делу, без лишнего — самые нужные команды для повседневной работы с репозиторием.
А если нужна более расширенная подборка — загляните в наш прошлый чит-лист. Возможно даже откроете для себя что-то новое
Кратко, по делу, без лишнего — самые нужные команды для повседневной работы с репозиторием.
А если нужна более расширенная подборка — загляните в наш прошлый чит-лист. Возможно даже откроете для себя что-то новое
Please open Telegram to view this post
VIEW IN TELEGRAM
Forwarded from Код найма
Хватит искать работу в одиночку!
Ты крутой айтишник, но поиск работы превращается в квест: бесконечные резюме, где важны не навыки, а кейворды, десятки собеседований и постоянный стресс. Знакомо? Всё это выматывает и демотивирует. Мы тебя понимаем — и готовы поддержать!
Команда Tproger открывает первое реалити-шоу в Телеграм о поиске работы — «Код найма».
Вместе с опытными менторами ты пройдешь все этапы найма:
➡️ Прокачаешь резюме так, чтобы его заметили
➡️ Научишься проходить собеседования без волнения
➡️ Получишь честную обратную связь от рекрутеров
➡️ И, главное, дойдёшь до оффера в компании мечты!
Весь путь будет проходить на глазах у подписчиков канала — они тоже смогут давать советы и поддерживать тебя.
Хочешь стать героем нашего реалити и получить шанс найти работу мечты?
✍️ Заполняй анкету
Мы выберем трёх участников, которым поможем пройти весь путь до оффера.
Присоединяйся к «Коду найма» — и пусть твой следующий оффер станет началом новой жизни!
Ты крутой айтишник, но поиск работы превращается в квест: бесконечные резюме, где важны не навыки, а кейворды, десятки собеседований и постоянный стресс. Знакомо? Всё это выматывает и демотивирует. Мы тебя понимаем — и готовы поддержать!
Команда Tproger открывает первое реалити-шоу в Телеграм о поиске работы — «Код найма».
Вместе с опытными менторами ты пройдешь все этапы найма:
Весь путь будет проходить на глазах у подписчиков канала — они тоже смогут давать советы и поддерживать тебя.
Хочешь стать героем нашего реалити и получить шанс найти работу мечты?
✍️ Заполняй анкету
Мы выберем трёх участников, которым поможем пройти весь путь до оффера.
Присоединяйся к «Коду найма» — и пусть твой следующий оффер станет началом новой жизни!
Please open Telegram to view this post
VIEW IN TELEGRAM
Опрос про роль ИИ в вашей работе
Редакция Tproger проводит регулярное исследование об отношении айтишников к Искусственному интеллекту. Это небольшая анкета займет не более 5 минут, но очень поможет прояснить отношение разных групп к AI. Результатами обязательно поделимся.
#опрос
@zen_of_python
Редакция Tproger проводит регулярное исследование об отношении айтишников к Искусственному интеллекту. Это небольшая анкета займет не более 5 минут, но очень поможет прояснить отношение разных групп к AI. Результатами обязательно поделимся.
#опрос
@zen_of_python
This media is not supported in your browser
VIEW IN TELEGRAM
whatsonpypi | Ускоряем обновление зависимостей
Если при обновлении библиотек проекта вам неохота каждый раз посещать pypi.org, с помощью этой утилиты вы сможете вывести данные о крайней версии и совместимости с Python прямо в командную строку.
Репозиторий проекта
#инструмент
@zen_of_python
Если при обновлении библиотек проекта вам неохота каждый раз посещать pypi.org, с помощью этой утилиты вы сможете вывести данные о крайней версии и совместимости с Python прямо в командную строку.
Репозиторий проекта
#инструмент
@zen_of_python
Новый инструмент для отладки асинхронных процессов
С выходом Python 3.14 beta 2 появился новый CLI-инструмент для инспекции асинхронных задач:
Команда выводит табличный список активных корутин с их именами, стеком и зависимостями.
Сферы применения
— Telegram-боты;
— aiohttp и другие HTTP-серверах;
— await‑запросы к БД.
Теперь нет нужды вставлять логи или использовать профайлеры — диагностика идет вживую и позволит увидеть:
— какие запросы обрабатываются дольше всего;
— какие «вешают» бота;
— какие запросы ожидают своей очереди.
Документация
#факт
@zen_of_python
С выходом Python 3.14 beta 2 появился новый CLI-инструмент для инспекции асинхронных задач:
python -m asyncio ps 12345 # Табличный список задач для процесса с PID 12345
python -m asyncio pstree 12345 # Древовидное отображение взаимозависимых корутин
Команда выводит табличный список активных корутин с их именами, стеком и зависимостями.
Сферы применения
— Telegram-боты;
— aiohttp и другие HTTP-серверах;
— await‑запросы к БД.
Теперь нет нужды вставлять логи или использовать профайлеры — диагностика идет вживую и позволит увидеть:
— какие запросы обрабатываются дольше всего;
— какие «вешают» бота;
— какие запросы ожидают своей очереди.
Документация
#факт
@zen_of_python
Python.org
Python Release Python 3.14.0b2
The official home of the Python Programming Language
bandit | Насколько защищен ваш проект?
Инструмент найдет «секурные прорехи» в вашем проекте, включая запушенные ключи / токены и небезопасные участки кода. Внезапно проект OpenStack — опенсорсной облачной инициативы NASA.
Репозиторий проекта
#инструмент
@zen_of_python
Инструмент найдет «секурные прорехи» в вашем проекте, включая запушенные ключи / токены и небезопасные участки кода. Внезапно проект OpenStack — опенсорсной облачной инициативы NASA.
Репозиторий проекта
#инструмент
@zen_of_python
Несколько способов ускорить ваш код.
В реальных задачах — от обработки данных до веб-сервисов — скорость выполнения критична. Незаметные узкие места могут приводить к росту затрат на инфраструктуру и снижению качества обслуживания пользователей. Вашему вниманию эффективные способа ускорить Python — каждый из них помогает бороться с типичными источниками замедлений.
tuple вместо list
Кортежи неизменяемы: они создаются один раз, занимают фиксированную память и оптимизируются самим интерпретатором. Списки же — динамический тип: их память часто переранее выделяется, они имеют более сложную внутреннюю структуру.
Поэтому когда структура фиксирована и не требуется изменять элементы — используйте кортеж. Это существенно сэкономит память, когда речь идёт о больших объёмах данных.
set и dict вместо list при частых проверках и поисках
— Поиск x in my_list — линейная операция (O(n));
— Проверка присутствия через my_set или my_dict — это хеш-таблица (O(1));
Если вам нужна частая проверка вхождений (фильтрация или поиск), выбирайте сет или словарь. Первый предпочтителен для уникальных элементов, второй — когда нужен быстрый доступ по ключу и хранение значений.
Локальные переменные быстрее
Переменные локальной области видимости читаются быстрее, чем глобальные — это из-за особенностей функционирования интерпретатора. В циклах и функциях выносите глобальные объекты как список, словарь в локальные переменные — это ускоряет многократные обращения.
#основы
@zen_of_python
В реальных задачах — от обработки данных до веб-сервисов — скорость выполнения критична. Незаметные узкие места могут приводить к росту затрат на инфраструктуру и снижению качества обслуживания пользователей. Вашему вниманию эффективные способа ускорить Python — каждый из них помогает бороться с типичными источниками замедлений.
tuple вместо list
Кортежи неизменяемы: они создаются один раз, занимают фиксированную память и оптимизируются самим интерпретатором. Списки же — динамический тип: их память часто переранее выделяется, они имеют более сложную внутреннюю структуру.
Поэтому когда структура фиксирована и не требуется изменять элементы — используйте кортеж. Это существенно сэкономит память, когда речь идёт о больших объёмах данных.
set и dict вместо list при частых проверках и поисках
— Поиск x in my_list — линейная операция (O(n));
— Проверка присутствия через my_set или my_dict — это хеш-таблица (O(1));
Если вам нужна частая проверка вхождений (фильтрация или поиск), выбирайте сет или словарь. Первый предпочтителен для уникальных элементов, второй — когда нужен быстрый доступ по ключу и хранение значений.
Локальные переменные быстрее
Переменные локальной области видимости читаются быстрее, чем глобальные — это из-за особенностей функционирования интерпретатора. В циклах и функциях выносите глобальные объекты как список, словарь в локальные переменные — это ускоряет многократные обращения.
#основы
@zen_of_python
Telegram
Zen of Python
Полный Дзен Пайтона в одном канале
Разместить рекламу: @tproger_sales_bot
Правила общения: https://tprg.ru/rules
Другие каналы: @tproger_channels
Сайт: https://tprg.ru/site
Регистрация в перечне РКН: https://tprg.ru/xZOL
Разместить рекламу: @tproger_sales_bot
Правила общения: https://tprg.ru/rules
Другие каналы: @tproger_channels
Сайт: https://tprg.ru/site
Регистрация в перечне РКН: https://tprg.ru/xZOL
Создаём микросервис по выгодному обмену крипты
В статье вы узнаете, как создать микросервис, что анализирует предложения и подсказывает, где можно выгоднее обменять криптовалюту. Все это делается на Python, который делает запросы к API exnode.ru и сортирует результат по выгоде. Вы также увидите, как создается веб‑интерфейс + Telegram‑бот.
#api
@zen_of_python
В статье вы узнаете, как создать микросервис, что анализирует предложения и подсказывает, где можно выгоднее обменять криптовалюту. Все это делается на Python, который делает запросы к API exnode.ru и сортирует результат по выгоде. Вы также увидите, как создается веб‑интерфейс + Telegram‑бот.
#api
@zen_of_python
Вопросы подписчиков
Zen of Python поддерживает новоприбывших (и не только) в особой рубрике. Как это работает:
— Спрашивайте что угодно (в комментариях под этим постом), связанное с Python. Здесь нет плохих вопросов!
— Сообщество вас поддержит. Самые интересные вопросы мы разберём в отдельном посте;
#вопросы_новичков
@zen_of_python
Zen of Python поддерживает новоприбывших (и не только) в особой рубрике. Как это работает:
— Спрашивайте что угодно (в комментариях под этим постом), связанное с Python. Здесь нет плохих вопросов!
— Сообщество вас поддержит. Самые интересные вопросы мы разберём в отдельном посте;
#вопросы_новичков
@zen_of_python
mutmut | Мутационные тесты
Mutation Testing — это метод, при котором в ваш исходный код вносятся небольшие изменения (мутации), и затем запускаются ваши тесты.
Цель: проверить, насколько эффективно тесты обнаруживают ошибки.
Утилита вносит мутации в ваш код (на уровне исходников), запускает ваши юнит-тесты после каждой мутации. Затем помечает мутации:
— ✅ Killed (тест поймал баг);
— ❌ Survived (мутация выжила).
Такое особенно важно, если вы работаете в сфере безопасности, финансов.
Цена: бесплатно
Репозиторий проекта
#инструмент
@zen_of_python
Mutation Testing — это метод, при котором в ваш исходный код вносятся небольшие изменения (мутации), и затем запускаются ваши тесты.
Цель: проверить, насколько эффективно тесты обнаруживают ошибки.
Утилита вносит мутации в ваш код (на уровне исходников), запускает ваши юнит-тесты после каждой мутации. Затем помечает мутации:
— ✅ Killed (тест поймал баг);
— ❌ Survived (мутация выжила).
Такое особенно важно, если вы работаете в сфере безопасности, финансов.
Цена: бесплатно
Репозиторий проекта
#инструмент
@zen_of_python
Разжигаем огонь... вашей страсти к Python
Проект Kindling Projects предлагает начинающим программистам идеи для небольших проектов на Python, которые достаточно просты для освоения, но при этом позволяют развивать навыки и проявлять креативность.
Сотни несложных утилит, игр, классических кодерских задач, клонов популярных сервисов и проч.
#инструмент
@zen_of_python
Проект Kindling Projects предлагает начинающим программистам идеи для небольших проектов на Python, которые достаточно просты для освоения, но при этом позволяют развивать навыки и проявлять креативность.
Сотни несложных утилит, игр, классических кодерских задач, клонов популярных сервисов и проч.
#инструмент
@zen_of_python
Немного безумные способы определения функций
Мы привыкли определять функции с помощью ключевого слова
Lambda-функции — минимализм в действии
Это удобно, но не стоит использовать lambda для сложной логики — теряется читаемость.
С помощью
Это очень удобно, если вы часто вызываете функцию с одними и теми же аргументами и не хотите писать обёртки.
Декораторы
Декораторы позволяют оборачивать функции и изменять их поведение — например, добавлять логирование, кэширование или даже модифицировать аргументы:
Мощный инструмент, но при чрезмерном использовании может запутать читаемость кода.
Классы с методом
В Python можно сделать объект вызываемым, определив метод
Бонус — можно хранить состояние внутри объекта, например, счётчик вызовов.
Этот способ может быть полезен для метапрограммирования, например, если нужно дать пользователю возможность писать код в аналитической панели. Но использовать его нужно с большой осторожностью из-за проблем безопасности и отладки.
Те же плюсы и минусы, что и у
С помощью
Это крайне экзотический способ, почти бесполезный в практике, но демонстрирует гибкость Python.
#основы
@zen_of_python
Мы привыкли определять функции с помощью ключевого слова
def
. Однако Python как язык куда глубже и гибче, чем может показаться на первый взгляд. Существует несколько способов создать функцию — от практичных до откровенно абсурдных. Lambda-функции — минимализм в действии
lambda
позволяет создавать анонимные функции в одну строку. Это удобно, когда функция короткая и используется "на лету", например, в map()
или filter()
. Lambda-функции не могут содержать сложную логику или много выражений — только одно выражение, без return
и вложенных блоков:
multiply_by_three = lambda x: x * 3
print(multiply_by_three(5))
Это удобно, но не стоит использовать lambda для сложной логики — теряется читаемость.
functools.partial
С помощью
functools.partial
можно создавать функции с уже предзаданными аргументами:
from functools import partial
def power(base, exponent):
return base ** exponent
square = partial(power, exponent=2)
print(square(5)) # 25
Это очень удобно, если вы часто вызываете функцию с одними и теми же аргументами и не хотите писать обёртки.
Декораторы
Декораторы позволяют оборачивать функции и изменять их поведение — например, добавлять логирование, кэширование или даже модифицировать аргументы:
def print_result(fmt):
def decorator(func):
def wrapper(*args, **kwargs):
result = func(*args, **kwargs)
print(fmt.format(result))
return result
return wrapper
return decorator
@print_result("Результат: {}")
def double(x):
return x * 2
double(4)
Мощный инструмент, но при чрезмерном использовании может запутать читаемость кода.
Классы с методом
__call__
В Python можно сделать объект вызываемым, определив метод
__call__
. Таким образом, вы можете создавать функции как объекты с состоянием:
class Greeter:
def __call__(self, name):
print(f"Hello, {name}!")
greet = Greeter()
greet("Bob")
Бонус — можно хранить состояние внутри объекта, например, счётчик вызовов.
exec()
exec()
выполняет строку как код Python. Да, вы можете определять функции с его помощью.
code = '''
def add(x):
return x + 10
'''
exec(code)
print(add(5)) # 15
Этот способ может быть полезен для метапрограммирования, например, если нужно дать пользователю возможность писать код в аналитической панели. Но использовать его нужно с большой осторожностью из-за проблем безопасности и отладки.
eval()
eval()
— ещё один способ выполнить строку кода, но только если это выражение, а не целый блок.
add = eval("lambda x: x + 10")
print(add(3)) # 13
Те же плюсы и минусы, что и у
exec()
.types.new_class
С помощью
types.new_class()
можно создавать callable-объекты (через `__call__`) на лету.
import types
def class_body(ns):
ns['__call__'] = lambda self, x: x * 2
DynamicFunction = types.new_class("DynamicFunction")
class_body(DynamicFunction.__dict__)
func = DynamicFunction()
print(func(6)) # 12
Это крайне экзотический способ, почти бесполезный в практике, но демонстрирует гибкость Python.
#основы
@zen_of_python
Telegram
Zen of Python
Полный Дзен Пайтона в одном канале
Разместить рекламу: @tproger_sales_bot
Правила общения: https://tprg.ru/rules
Другие каналы: @tproger_channels
Сайт: https://tprg.ru/site
Регистрация в перечне РКН: https://tprg.ru/xZOL
Разместить рекламу: @tproger_sales_bot
Правила общения: https://tprg.ru/rules
Другие каналы: @tproger_channels
Сайт: https://tprg.ru/site
Регистрация в перечне РКН: https://tprg.ru/xZOL
PEP 734: Параллелизм без
Запланировано добавление нового стандартного модуля
Каждый подинтерпретатор имеет свой собственный GIL, то есть код может действительно выполняться параллельно (в отличие от обычных потоков). Нет накладных расходов на создание отдельных процессов и межпроцессное взаимодействие.
Уже сейчас доступен в виде пакета на PyPI:
#инструмент
@zen_of_python
🙉 — Если лучше не видеть, как это работает
multiprocessing
Запланировано добавление нового стандартного модуля
concurrent.interpreters
. Он будет управлять несколькими изолированными подинтерпретаторами внутри одного процесса.Каждый подинтерпретатор имеет свой собственный GIL, то есть код может действительно выполняться параллельно (в отличие от обычных потоков). Нет накладных расходов на создание отдельных процессов и межпроцессное взаимодействие.
Уже сейчас доступен в виде пакета на PyPI:
interpreters-pep-734
, который можно использовать с Python 3.12+.#инструмент
@zen_of_python
🙉 — Если лучше не видеть, как это работает
great-tables | Make Tables Great Again
Создатель этого репозитория напоминает нам, что у грамотной HTML-таблицы, помимо тела, есть еще (под)заголовок, футер и объединенные ячейки. Забытые возможности <table>...
Цена: бесплатно
Репозиторий проекта
#инструмент
@zen_of_python
Создатель этого репозитория напоминает нам, что у грамотной HTML-таблицы, помимо тела, есть еще (под)заголовок, футер и объединенные ячейки. Забытые возможности <table>...
Цена: бесплатно
Репозиторий проекта
#инструмент
@zen_of_python
Виды компьютерных сетей
Белый хакер разложил по полочкам, какие бывают топологии систем: кольцо, шина, звезда, WLAN, WAN.
Суперпонятная статья для новичков и не только: вы точно почерпнете для себя что-то новое.
#основы
@zen_of_python
Белый хакер разложил по полочкам, какие бывают топологии систем: кольцо, шина, звезда, WLAN, WAN.
Суперпонятная статья для новичков и не только: вы точно почерпнете для себя что-то новое.
#основы
@zen_of_python
This media is not supported in your browser
VIEW IN TELEGRAM
flowshow | отслеживайте задачи с графами
Предоставляет декоратор
Обеспечивает удобный визуальный интерфейс: после запуска
Жизнь в условиях проектов с асинхронностью в том числе станет чуточку легче.
На PyPi
#инструмент
@zen_of_python
Предоставляет декоратор
@task
, который превращает обычную функцию в «таску» с автоматическим сбором метаданных.Обеспечивает удобный визуальный интерфейс: после запуска
main_job()
можно вызвать main_job.plot()
или main_job.last_run.render()
, чтобы увидеть граф выполнения задач, время начала и окончания, входы и выходы, ошибки, логи и количества повторных запусков. Жизнь в условиях проектов с асинхронностью в том числе станет чуточку легче.
На PyPi
#инструмент
@zen_of_python